
Theoretical Basis: Plasma Focus Model (Radiative)-S Lee Model 
http://www.intimal.edu.my/school/fas/UFLF/ 

 
(This revision, 17 March 2008, conforms to RADPFV5.13.8, including beam-target neutron 
yield and plasma self-absorption with smooth transition from volumetric to surface emission) 
 
This model has been developed for Mather-type (1) plasma focus machines. It was developed 
for the 3kJ machine known as the UNU/ICTP PFF (2,3) (United Nations 
University/International Centre for Theoretical Physics Plasma Focus facility, which now 
forms an international network.In principal there is no limit to energy storage and electrode 
configuration, though house-keeping may need to be carried out in extreme cases, in order to 
keep within efficient ranges e.g. of graph plotting. 
 
For details of the computing package, go back to the introductory section.       
http://www.intimal.edu.my/school/fas/UFLF/
 
The model has been used for various applications, for example, in the design of a cascading 
plasma focus (Ref 4); and for estimating soft x-ray yield (Ref 5) for the purpose of developing a 
SXR source for microelectronics lithography (Ref 6); and recently in uncovering a pinch 
current limitation effect (Ref 7, 2008) , throwing new light on neutron scaling laws (Ref 8, 
2008) and as an experimental technique (Ref 9, 2008) to compute focus pinch current from a 
measured discharge current waveform. 
 
The 5-phase model is described in some detail in the following sections: 
 
1 Axial Phase 

2 Radial Inward Shock Phase 

3 Radial Reflected Shock Phase 

4 Slow Compression (Radiative) Phase 

5 Expanded Column Axial Phase 
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1 Axial Phase (snow-plow model) 
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Fig 1 (a)    Fig 1 (b) 

 
 

Rate of change of momentum at current sheath, position z, is 
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Magnetic force on current sheath is 
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fm = fraction of mass swept down the tube in the axial direction 
fc = fraction of current flowing in piston 
 
 
Equation of motion: 
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Circuit (current) Equation 
 
    I                   Lo        ro
 
             Ifc
 
      Co           Vo
            L(t)  Fig 2  Circuit schematic 
 S 
             r(t) 
 
 
Ignore r(t), plasma resistance.  This is the approximation which is generally used for electromagnetic 
drive. 
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Equations (I) and II) are the generating equations of the model. 
They contain the physics built into the model. 
 
They are coupled equations. 
 
The equation of motion is affected by the electric current I. 
 
The circuit equation is affected by the current sheath motion dt

dz  and position z. 

 
 
Normalise the equations to obtain scaling parameters 
 
Replace variables t, z, I by non-dimensionalised quantities as follows: 
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where the normalising quantities to, Io and Zo are carefully chosen to be relevant, characteristic, 
convenient quantities, reflecting the physics of the problem. 
 
 
Choices: 
 
zo is the length of the anode, 
 
to is ooCL  (noting that ooCLπ2 is the cycle time of Lo-Co discharge circuit) 
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Io is oo ZV where ooo CLZ =  is the surge impedance (noting that Io is the peak current of the   
Lo-Co discharge circuit with capacitor Co charged initially to Vo.) 
Normalising, we have: 
 
Equation of motion: 
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which we write as  
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Obtain first scaling parameter: 
 
We note, by inspection, 
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By inspection of equation (I.1), we note α is dimensionless. 
 
Hence since to has the dimension of time we may define a time value ta where 
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identifying this quantity as the characteristic axial transit time of the CS down the anode axial phase. 
 
We may then think of α as: 
 
α = (to/ta) – scaling parameter. 
 
ratio of characteristic electrical discharge time to characteristic axial transit time. 
 
We may further identify a characteristic axial transit speed Va = zo/ta
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The quantity ρ/⎟
⎠
⎞⎜

⎝
⎛

a
Io is the S (speed or drive) factor of electromagnetically driven devices, 

focus, pinches etc. 
 
Normalising the circuit (current) Equation, we have: 
 

⎥⎦
⎤

⎢⎣
⎡ +⎥

⎦

⎤
⎢
⎣

⎡
−−∫−= ζ

π
μ

τ
ζι

π
μιτι

τ
ι

o
c

o
o

o
ocoo

o

oo
o

o

o zcL
d
d

t
z

IcfIrd
c
tI

v
d
d

t
I

)(ln
2
f

)(ln
12

/  

and substituting in ,,// ooooooo CLtCLVI ==  we have 
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛−∫−= oooooo Lzc

d
dZrLzcd

d
d /)(ln

2
f1/(/ln

2
f1 c)c ζ

π
μ

τ
ζι

π
μτι

τ
ι  

 

write: ( βζδι
τ
ζβιτι

τ
ι

+⎟
⎠
⎞

⎜
⎝
⎛ −−∫−= 1/1

d
dd

d
d )        -- (II.1) 

 
 
Second scaling parameter 
 

We note oa zcL )(ln
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Hence 
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L
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=β  is the ratio of load to source inductance and since the device is electromagnetic, the 

electrodynamics is determined strongly by this scaling parameter. 
 
The third scaling parameter oo Zr /=δ  is the ratio of circuit stray resistance to surge impedance.  
This acts as a damping effect on the current. 
 
(I.1) and (II.1) are the Generating Equations that may be integrated step-by-step. 
 
Calculate voltage across input terminals of focus tube: 
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Normalized form 
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Integration 
 
Define initial conditions: 
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Set time increment: D = 0.001 
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Increment time: τ = τ + D 
 
Next step values are computed using the following linear approximations: 
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Use new values of τιιζ
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generating equs (I.1) and (II.1). 
 
Increment time again and repeat calculations of next step values and new generating values. 
 
Continue procedure until ζ = 1. 
 
Then go on to radial phase inward shock computations. 
 
 
2 Radial Inward Shock Phase (Slug model) 
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The snowplow model is used for axial phase just to obtain axial trajectory and speed (from which 
temperature may be deduced) and to obtain reasonable current profile.  As the CS is assumed to be 
infinitesmally thin, no information of density is contained in the physics of the equation of motion, 
although an estimate of density may be obtained by invoking additional mechanisms e.g. using shock 
wave theory. 
 
In the radial phase however, a snowplow model (with an infinitesmally thin CS) would eventually  
(in the integration) lead to all current flowing at r = 0, with infinite inductance and density. 
 
We thus replace the snow plow model by a slug model .  In this model, the magnetic pressure drives 
a shock wave ahead of it, creating a space for the magnetic piston (CS) to move into. 
 
The speed of the inward radial shock front (see Fig 1b)is determined by the magnetic pressure 
(which depends on the drive current value and CS position rp). 
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The speed of the magnetic piston (CS) is determined by the first law of thermodynamics applied to 
the effective increase in volume between SF and CS, created by the incremental motion of the SF. 
 
The compression is treated as an elongating pinch. 
 
Four generating equations are needed to describe the motion of (a) SF, (b) CS (c) pinch elongation 
and the electric current (d); to integrate for the four variables rs, rp, zf & I. 
 
 
Motion of Shock Front: 
 
     rp  rs
     piston  SF 
 
    Pm  P    ρo, Po, To

    vacuum ρ 
      T 
 

From Shock Wave theory, shock pressure 2
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causes the pressure of the shocked gas (just behind the shock front) to rise to value P. 
 
If we assume that this pressure is uniform from the SF to the CS (infinite acoustic [small 
disturbance] speed approximation) then across the piston, we may apply P = Pm where 
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where I is the circuit current and Ifc is the current flowing in the cylindrical CS, taken as the same fc 
as in the axial phase, and ρofmr is the effective mass density swept into the radial slug; where fmr is  a 
different (generally larger) factor than fm of the axial phase. 
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Elongation speed of CS (open-ended at both ends) 
 
The radial compression is open at one end.  Hence an axial shock is propagated in the z-direction, 
towards the downstream anode axis.  We take zf as the position of the axial CS (rather than the SF).  
The pressure driving the axial shock is the same as the pressure driving the inward radial shock.  
Thus the axial shock speed is the same as the radial shock speed.  The CS speed is slower, from 
shock wave theory, by an approximate factor of 2/(γ+1).  Thus the axial elongation speed of the CS 
is: 
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In this modelling we treat the elongation in a very approximate fashion, as its effect on the 
compressing column is relatively secondary.  The main mechanism controlling the state of the 
plasma column is the radial compression.  The radial CS (piston) speed is hence treated with more 
care as follows: 
 
 
Radial piston motion 
 
We inquire: 
 
For an incremental motion, drs, of the shock front, at a driving current I, what is the relationship 
between plasma slug pressure P and plasma slug volume V? 
 
We assume an adiabatic relationship (7) (infinite small disturbance speed – for which we will apply a 
correction subsequently) to a fixed mass of gas in the slug during the incremental motion drs.  We 
have 
 
PVγ = constant or 
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Now slug volume V = π (rp
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and at first sight dV = 2π (rpdrp – rs drs) zf + π (rp

2 – rs
2) dzf – not correct! 

 
But here we note that although the motion of the piston drp does not change the mass of gas in the 
slug, the motion of the shock front, drs, does sweep in an amount of ambient gas. 
 
This amount swept in is equal to the ambient gas swept through by the shock front in its motion drs.  
This swept-up gas is compressed by a ratio (γ+1)/( γ-1) and will occupy part of the increase in 
volume dV. 
The actual increase in volume available to the original mass of gas in volume V does not correspond 
to increment drs but to an effective (reduced) increment drs (2/(γ+1)).  (Note γ is specific heat ratio of 
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the plasma e.g. γ = 5/3 for atomic gas, γ = 7/5 for molecular gas; for strongly ionising argon γ 
has value closer to 1 e.g. 1.15.) 
 
Thus, the more correct interpretation is: 
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and adding together dP/P and γdV/V we have 
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Rearranging and putting drp as the subject we have 
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where we are reminded rp = radial piston position 
    rs = radial shock front position 
    zf = axial piston position 
 
 
Circuit Equation during radial phase 
 
The inductance of the focus tube now consists of the full inductance of the axial phase and the 
inductance of the radially imploding & elongating plasma pinch. 
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Thus the circuit (current) equation is 
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Giving 
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Generating equations (III), (IV), (V), (VI) form a close set of equations which may be integrated for 
rs, rp, zf and I. 
 
 
Normalization 
 
For this phase the following normalization is adopted. 
 
τ = t/to, ι = I/Io as in axial phase but with κs = rs/a, κp = rp/a, ζf = zf/a ie. distances are normalized to 
anode radius, instead of anode length. 
 
After normalization we have: 
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Axial column elongation speed (both ends of column defined by axial piston) 
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where the scaling parameters are  β1 = β/(Flnc), F = zo/a and                                                                                  
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Note that whereas we interpret α =to/ta, we may interpret α1 = ta/tr where tr is a characteristic radial 
transit time. 
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We note that α1 the ratio of characteristic axial transit to characteristic radial compression inward 
shock transit time is essentially a geometrical ratio 
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Note that the radial characteristic speed has the same dependence as the axial transit speed on drive 
factor ( ) ρ// aIS o= . 
 
 
Calculate voltage V across PF input terminals 
 
As in the axial phase, the voltage is taken to have only inductive component. 
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We may also write in normalised form υ = V/Vo
(normalised to initial capacitor voltage Vo) 
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The generating equations (III.1), (IV.1), (V.1), (VI.1) may now be integrated  using the following 
initial conditions: 
τ = the time that axial phase ended 
κs = 1 
κp = 1 
ζf = 0 (taken as a small number such as 0.00001 to avoid numerical difficulties for equation V.1) 



 

 

 

12

ι = value of current at the end of the axial phase. 
τιd∫ = value of ‘flowed charge’ at end of axial phase. 

 
The integration (step-by-step) may proceed with the following algorithm: (taking smaller time 
increment of D = 0.001/100) 
Using initial values (above) of κs, κp, ζf and ι 

τ
ι

τ
κ

τ
ζ

τ
κ

d
dand

d
dd

d
d ps ,

d
, f  are sequentially calculated from generating equation (III.1), (IV.1), (V.1), 

(VI.1). 
 

Then sequentially using linear approximation: 
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D
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ιτιτι
τ
ιιι

τ
κ

κκ

τ
ζζζ

τ
κκκ

+∫=∫

+=

+=

+=
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d
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Time is then incremented by D, and the next step value of  
τ
ι

τ
κ

τ
ζ

τ
κ

d
d

d
dd

d
d ps ,,

d
, f  are computed from 

(III.1), (IV.1), (V.1) and (VI.1), followed by linear approximation for κs, ζf, κρ, ι and . τιd∫
 
The sequence is repeated step-by-step until κs = 0. 
 
 
Correction for finite acoustic (small disturbance) speed. 
 
In the slug model above we assume that the pressure exerted by the magnetic piston (current I, 

position rp) is instantaneously felt by the shock front (position rs).  Likewise the shock speed 
dt
drs  is 

instantaneously felt by the piston (CS).  This assumption of inifinite small disturbance speed (SDS) 
is implicit in equations (III) and (V) (or in normalised form (III.1) and (V.1)). 
 
Since the SDS is finite, there is actually a time lapse Δt communicating between the SF and CS.  
This communication delay has to be incorporated into the model.  Otherwise for the PF, the 
computation will yield too high values of CS and SF speed. 
 
Consider the instant t, SF is at rs, CS at rp, value of current is I.  SF actually feels the effect of the 
current not of value I but of a value Idelay which flowed at time (t-Δt), with the CS at rpdelay.  Similarly 

the piston ‘thinks’ the SF speed is not 
dt
drs  but 

delay

s

dt
dr

⎟
⎠
⎞

⎜
⎝
⎛  at time (t-Δt). 

 
 
To implement this finite SDS correction we adopt the following procedure: 
 
Calculate the SDS, taken as the acoustic speed. 
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where γ = specific heat ratio, M = Molecule Weight, 
Ro = universal Gas constant = 8 x 103 (SI units) 
mi = mass of proton, k = Boltzmanns constant. 
Dc = departure coefficient = DN (1+z) 
where Z, here, is the  effective charge of the plasma 

∑=
J

r
rrZ α , summed over all ionization levels r = 1… J. 

DN = dissociation number, e.g. for Deuterium DN = 2, whereas for argon DN = 1. 
 
The temperature T may be computed for the shocked plasma as 

2

2)1(
)1(2

⎟
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−
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dt
dr

RoD
MT s

γ
γ  

 
Calculate the communication delay time as 
ΔT = (rp – rs)/SDS 
 
In our programme using the Microsoft EXCEL VISUAL BASIC, data of the step-by-step integration 
is stored row-by-row, each step corresponding to one row.  Thus the ΔT may be converted to Δ (row 
number) by using Δ (row number) = ΔT/(timestep increment) this Δ (row number being, of course, 
rounded off to an integer. 
 
The correction then involves ‘looking back’ to the relevant row number to extract the corrected 

values of Idelay, rpdelay,  ⎟
⎠
⎞

⎜
⎝
⎛

dt
drs

delay. 

 
Thus in the actual numerical integration, in equation (III.1), ι and κp are replaced by ιdelay and κpdelay 

and in equation (V.1) 
τd

dks  is replaced by 
delay

s

d
dk

⎟
⎠
⎞

⎜
⎝
⎛

τ
 

 
 
 
Radial Reflected Shock Phase 
 
When the inward radial shock hits the axis, κs = 0.  Thus in the computation, when κs ≤ 1 we exit 
from radial inward shock phase.  We start computing the RS phase. 
 
The RS is given a constant speed of 0.3 of on-axis inward radial shock speed. 
 
In this phase computation is carried out in real (SI) units. 
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Reflected Shock Speed: 
 

axison
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Piston speed: 
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Use the same equation as V except put 0=⎟
⎠
⎞

⎜
⎝
⎛

dt
drs  and rs=0 

 
Elongation speed: 
 
Use same equation as Eq IV. 
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Circuit Equation: 
 
Use the same equation as Eq VI. 
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Continue integrating seamlessly. 
 
 
Tube Voltage 
 
Use the same equation as Eq (VI.10). 
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In this phase as the RS (position rr) moves outwards, the piston (position rp) continues moving 
inwards. 
 
Eventually rr increases until its value reaches the decreasing value of rp. 
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We make the assumption that the RS is sufficiently attenuated when it reaches the piston, so that its 
overpressure is negligible. 
 
In that case, the piston may not be pushed outwards, but will continue to move inwards, although its 
inward speed may be gradually reduced. 
 
 
4  Slow Compression Phase 
 
In this phase the piston speed is: 
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Here we have included energy loss/gain terms 
into the equation of motion.   
The plasma gains energy from Joule heating; 
and loses energy through Bremsstrahlung & line radiation. 
Energy gain term will tend to push the piston outwards. 
Energy loss term will have the opposing effect. 
 
Using Spitzer form for resistivity, for the plasma column: 
 
 
 
 
 
 
To estimate the temperature, T, we use: 
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Radiation Terms 
 
The Bremsstrahlung loss term may be written as: 
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Recombination loss term is written as: 

( ) 5.0
f

25235 /1092.5 TzrZNx
dt

dQ
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rec π−−=  

 
The line loss term is written as: 
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where dQ/dt is the total power gain/loss 
of the plasma column 
 

By this coupling, if, for example, the radiation loss ⎟
⎠
⎞

⎜
⎝
⎛ +

dt
dQ

dt
dQ LB  is severe, this would lead to a 

large value of  
dt

drp  inwards.  In the extreme case, this leads to radiation collapse, with rp going 

rapidly to zero, or to such small values that the plasma becomes opaque to the outgoing radiation, 
thus stopping the radiation loss.   
 
This radiation collapse occurs at a critical current of 1.6 MA (the Pease-Braginski current) for 
deuterium.  For gases such as Neon or Argon, because of intense line radiation, the critical current is 
reduced to even below 100kA, depending on the plasma temperature. 
 
Plasma Self Absorption and transition from volumetric emission to surface emission 
 
Plasma self absorption and volumetric (emission described above) to surface emission of the pinch 
column have been implemented in the following manner. 
 
The photonic excitation number (see File 3 Appendix by N A D Khattak) is written as follows: 
M = 1.66 x 10 -15rp Zn

 0.5 ni / (Z T1.5)  with T in eV, rest in SI units 
The volumetric plasma self-absorption correction factor A is obtained in the following manner: 
A1 = (1 + 10-14ni Z) / (T 3.5)) 
A2 = 1 / AB1
A = A2

 (1 + M) 

 

Transition from volumetric to surface emission occurs when the absorption correction factor goes 
from 1 (no absorption) down to 1/e (e=2.718) when the emission becomes surface-like given by the 
expression: 

( ) 4
f

5.05.3 TzrZconstxZ
dt

dQ
pn−=  

where the constant const is taken as 4.62x10-16 to conform with numerical experimental observations 
that this value enables the smoothest transition, in general, in terms of power values from volumetric 
to surface emission. 
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Where necessary another fine adjustment is made at the transition point adjusting the constant so that 
the surface emission power becomes the same value as the absorption corrected volumetric emission 
power at the transition point. Beyond the transition point (with A less than 1/e) radiation emission 
power is taken to be the surface emission power. 
 
Neutron Yield 
 
http://www.intimal.edu.my/school/fas/UFLF/ 
Adapted from the following paper (with modifications for erratum) 

Pinch current limitation effect in plasma focus
S. Lee and S. H. Saw, Appl. Phys. Lett. 92, 021503 (2008), DOI:10.1063/1.2827579 
Copyright (2008) American Institute of Physics. This article may be downloaded for personal use 
only. Any other use requires prior permission of the author and the American Institute of 
Physics. This article appeared in (citation above) and may be found at  
http://link.aip.org/link/?APPLAB/92/021503/1

 
Neutron yield is calculated with two components, thermonuclear term and beam-target term. 
The thermonuclear term is taken as: 
dYth = 0.5ni

2( 3.142)rp
2zf<σv>(time interval) 

Where <σv> is the thermalised fusion cross section-velocity product corresponding to the plasma 
temperature, for the time interval under consideration. The yield Yth is obtained by summing up over 
all intervals during the focus pinch. 
 
The beam-target term is derived using the following phenomenological beam-target neutron 
generating mechanism17, incorporated in the present RADPFV5.13. A beam of fast deuteron ions is 
produced by diode action in a thin layer close to the anode, with plasma disruptions generating the 
necessary high voltages. The beam interacts with the hot dense plasma of the focus pinch column to 
produce the fusion neutrons. In this modeling each factor contributing to the yield is estimated as a 
proportional quantity and the yield is obtained as an expression with proportionality constant. The 
yield is then calibrated against a known experimental point. 
          The beam-target yield is written in the form:   Yb-t ~nb ni (rp

2zp) (σ vb) τ 
where nb is the number of beam ions per unit plasma volume, ni is the ion density, rp is the radius of 
the plasma pinch with length zp, σ the cross-section of the D-D fusion reaction, n- branch18, vb the 
beam ion speed and τ is the beam-target interaction time assumed proportional to the confinement 
time of the plasma column. 
          Total beam energy is estimated17 as proportional to LpIpinch

2, a measure of the pinch inductance 
energy, Lp being the focus pinch inductance. Thus the number of beam ions is Nb~LpIpinch

2/vb
2 and nb 

is Nb divided by the focus pinch volume. Note that Lp~ln(b/rp)zp , that4 τ~rp~zp , and that vb~U1/2 
where U is the disruption-caused diode voltage17. Here ‘b’ is the cathode radius. We also assume 
reasonably that U is proportional to Vmax, the maximum voltage induced by the current sheet 
collapsing radially towards the axis.  
 
          Hence we derive: Yb-t= Cn ni Ipinch

2zp
2((lnb/rp))σ/Vmax

1/2                                                                (1) 
 
 where Ipinch is the current flowing through the pinch at start of the slow compression phase; rp and zp 
are the pinch dimensions at end of that phase. Here Cn is a constant which in practice we will 
calibrate with an experimental point. 
          The D-D cross-section is highly sensitive to the beam energy so it is necessary to use the 
appropriate range of beam energy to compute σ.  The code computes Vmax of the order of 20-50 kV. 
However it is known17, from experiments that the ion energy responsible for the beam-target 
neutrons is in the range 50-150keV17, and for smaller lower-voltage machines the relevant energy 19 

http://link.aip.org/link/?APPLAB/92/021503/1
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could be lower at 30-60keV. Thus to align with experimental observations the D-D cross section 
σ is reasonably obtained by using beam energy equal to 3 times Vmax.  
          A plot of experimentally measured neutron yield Yn vs Ipinch was made combining all available 
experimental data2,4,12,13,17,19-22. This gave a fit of Yn=9x1010Ipinch

3.8 for Ipinch in the range 0.1-1MA. 
From this plot a calibration point was chosen at 0.5MA, Yn=7x109 neutrons. The model code23 
RADPFV5.13 was thus calibrated to compute Yb-t which in our model is the same as Yn. 
 
Column elongation 
 
Whereas in the radial RS phase we have adopted a ‘frozen’ elongation speed model, we now allow 
the elongation to be driven fully by the plasma pressure. 
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Circuit current equation 
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Equations (XX), (XXI) and (XXII) are integrated as coupled equations for rp, zf and I.  At each step 

the value of 
dt
dQ  is also evaluated as above. 

 
The total energy radiated by Bremsstrahlung (QB) and line radiation (QB L) may also be evaluated. 
 
 
Voltage across focus terminals 
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Instability resistance/impedance not included in slow compression phase 
 
From experiments, it is well known that after a brief period (few ns), the quiescent column is rapidly 
broken up by instabilities.  One effect is a huge spike of voltage, partially observed at focus tube 
terminals.  This voltage spike is responsible for driving ion beams (forward direction) and REB 
(negative direction, up the anode) with energies typically 200keV. 
 

We could model this by including a suitable time varying resistance/impedance into the 
dt
dI  

equation; and adjusting this function to suit the observed voltage/beam energy characteristics.  There 
is a complication of this ‘annomalous’ resistance in our modelling.  If we include this resistance also 
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into the joule heating term in the piston motion Eq (XX), the sudden increase in 
dt

dQJ  will blow 

the piston outwards, leading to a huge negative voltage ‘spike’; not experienced experimentally.  The 
model may be more realistic if at the moment of introducing the ‘annomalous’ resistance, the piston 
motion is ‘frozen’, or even allowed to continue inwards, as the magnetic field in such ‘small 
Magnetic Reynolds Number’ situation will diffuse inwards – no piston blow-out! 
 
The final result of this instability mechanism is the breaking up of the focus pinch into a large 
expanded current column. 
 
 
5 Expanded Column Axial Phase 
 
We model the expanded column axial phase (3,4) in the following manner. 
 
In the expanded column phase we assume that the current flows uniformly from anode to cathode in 
a uniform column having the same radius as the anode and a length of z. 
 
 
The normalised equations (same normalisation as in axial phase): 
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The initial conditions for ι and are the last values of ι and from the last phase.  The initial 
value of ζ is ζ = 1 + ζ

τι d∫ τι d∫

f where ζf is the last length of the focus column, but normalised to zo, rather 
than a. 
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